MULTIPLICATIVELY INVARIANT SUBSPACES OF BESOV SPACES

BY

PER NILSSON

ABSTRACT. We study subspaces of Besov spaces $B_p^{s,q}$ which are invariant under pointwise multiplication by characters. The case s > 0 is completely described, and for the case s < 0 we extend known results.

Multiplicatively invariant subspaces of Besov spaces. The study of subspaces of the homogeneous Besov spaces $\dot{B}_{p}^{s,q}$ invariant for multiplication by characters was initiated by R. Johnson [4], [5]. In this paper we will simplify and improve some of his results and we will also settle some points left open in [4]. More generally if X is any Banach space of (tempered) distributions we associate with X several multiplicative invariant subspaces $\pi \cdot X$, $\pi_c X$, $\pi_{co}(X)$,

While in [4] the Besov spaces are defined using finite differences we will use the definition of Besov spaces depending on a general partition on the Fourier side as in [8]. From this definition it is apparent that the origin on the Fourier side plays a particular role. Since multiplication by a character means translation after Fourier transform this puts a heavy restriction on the multipliers.

I wish to express my gratitude to Professor J. Peetre for his guidance during my work on this paper.

0. Conventions. All function or distribution spaces are considered on \mathbb{R}^n . Likewise all integrals without integration limits are taken over all \mathbb{R}^n . In particular, L^p , where $1 \le p \le \infty$, denotes the Lebesgue space of measurable functions f such that the norm $||f||_p = (\int |f|^p dx)^{1/p}$ is finite. We let \mathfrak{M} be the space of bounded measures on \mathbb{R}^n and denote its norm likewise by $||\cdot||_1$. As usual S is the space of rapidly decreasing functions and its dual, the space of tempered distributions, will be denoted by S'. Similarly \mathfrak{N}' is the space of all (L. Schwartz) distributions. The relation $X \subset Y$, where X and Y are topological vector spaces, means that we have

Received by the editors March 31, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46E35; Secondary 46F05.

Key words and phrases. Besov spaces, Morrey spaces, pointwise multipliers.

a continuous imbedding. The notation $A \approx B$, where A and B are norms, means that $C_1A \leq B \leq C_2B$ for some positive constants C_1 , C_2 .

1. General results. We consider a Banach space X of tempered distributions in \mathbb{R}^n , i.e. $X \subset \mathbb{S}'$.

REMARK. Sometimes we are forced to work modulo polynomials of some fixed degree, but in order not to complicate things we presently disregard this.

If $x \in \mathbb{R}^n$ and $h \in \mathbb{R}^n$ we put

$$\langle x, h \rangle = \sum_{i=1}^{n} x_i h_i$$
 and $\chi_h(x) = e^{i\langle x, h \rangle}$.

We are interested in subspaces of X invariant under multiplication by χ_h . There is a largest such space which we denote by $\pi \cdot X$, i.e. $f \in \pi \cdot X$ iff $f \in S'$ and $\chi_h f \in X$ for each $h \in \mathbb{R}^n$. On $\pi \cdot X$ we have a natural topology given by the norms $f \to ||\chi_h f||$ where h ranges over \mathbb{R}^n .

We further denote by $\pi_c X$ the space of all $f \in S'$ such that $\chi_h f$ is a bounded set in X when h belongs to a compact set in \mathbb{R}^n . We give this space the topology defined by the norms $f \to \sup_{h \in K} ||\chi_h f||$ where K runs over all compact subsets of \mathbb{R}^n .

Finally we want to put global restriction on $\|\chi_h f\|$. If ω is a given positive function on \mathbb{R}^n we let $\pi_{\omega(h)}X$ be the space of all $f \in \pi \cdot X$ satisfying $\sup_{h \in \mathbb{R}^n} \|\chi_h f\| / \omega(h) < \infty$. With the norm $f \to \sup_{h \in \mathbb{R}^n} \|\chi_h f\| / \omega(h)$, $\pi_{\omega(h)}X$ becomes a Banach space. With no loss of generality we may assume that ω is submultiplicative, i.e. $\omega(h_1 + h_2) \le \omega(h_1)\omega(h_2)$. However the only case of real interest for us is $\omega(h) = (1 + |h|^2)^{s/2}$, s > 0. Therefore we right away introduce the abbreviation $\pi_s X = \pi_{(1+|h|^2)^{s/2}}X$. Clearly we have the following chain of inclusions.

$$X \supset \pi \cdot X \supset \pi_c X \supset \pi_s X \supset \pi_{s'} X \qquad (s' \leqslant s).$$

As we will see in §3, in general we cannot expect equality here. It is also clear that, for instance, $X_1 \subset X_2 \Rightarrow \pi \cdot X_1 \subset \pi \cdot X_2$, and similarly for π_c and $\pi_{\omega(h)}$.

We now establish further properties of these spaces.

LEMMA 1. Let G be a group of affine transformations on \mathbb{R}^n which acts continuously on X. Then G acts continuously on $\pi \cdot X$. In particular, if X is translation (dilation) invariant, $\pi \cdot X$ is translation (dilation) invariant.

PROOF. Let $a \in G$. Then we can write $ax = \tau + Ax$ where $\tau \in \mathbb{R}^n$ and A is a nonsingular linear transformation. Let $f \in \pi \cdot X$ and take $h \in \mathbb{R}^n$. Then we have the formula

$$\chi_h a(f) = \exp(-i\langle A^{-1}\tau, h\rangle)a(\chi_{(A')^{-1}h}f).$$

Therefore $\chi_h a(f) \in X$ for each $h \in \mathbb{R}^n$, i.e. $a(f) \in \pi \cdot X$. The continuity is obvious.

LEMMA 2. Assume that X is relatively closed in \mathfrak{D}' in the sense of Gagliardo [3] (i.e. if $(\varphi_r)_{r\in Z}$ is a bounded sequence in X which converges to φ in \mathfrak{D}' then $\varphi\in X$). Let $f\in\pi_{\omega(h)}X$ and $\varphi\in S$ with $|\omega(h)|\hat{\varphi}(h)|$ dh $<\infty$. Then $\varphi f\in X$.

PROOF. For any linear combination of characters χ_h we have the inequality:

$$\left\|\sum c_i \chi_{h_i} f\right\| \le \sum |c_i| \omega(h_i) \|f\|_{\pi_{\omega(h)} X}. \tag{1}$$

By Fourier's inversion formula,

$$\varphi(x) = (2\pi)^{-n} \int e^{i\langle x,h\rangle} \hat{\varphi}(h) dh.$$

If we approximate the integral with suitable Riemann sums we get a sequence $(\varphi_{\nu})_{\nu \in \mathbb{Z}}$ of finite linear combinations of characters which converge to φ in C^{∞} . It follows then that $\varphi_{\nu}f \to \varphi f$ in \mathfrak{D}' . Moreover (1) shows that $(\varphi_{\nu}f)_{\nu \in \mathbb{Z}}$ is bounded in X. As X is relatively closed in \mathfrak{D}' we may conclude that $\varphi f \in X$. \square

REMARK. The assumptions of Lemma 2 are, in particular, fulfilled if X is a dual space. If $f \in \pi_C X$ and supp $\hat{\varphi}$ is compact the above proof also yields $\varphi f \in X$. (This will be needed in Theorem 3.)

- 2. Some function spaces. In this section we define some of the spaces which will be needed.
 - 2.1. Besov spaces (see [1], [8]). Let $(\varphi_{\nu})_{\nu \in Z}$ be a family of testfunctions such that:

$$\varphi_{\nu} \in \mathbb{S}$$
, supp $\hat{\varphi}_{\nu} \subset \{2^{\nu-1} \leq |\xi| \leq 2^{\nu+1}\}$,

$$|\hat{\varphi}_{\nu}(\xi)| > C_{\varepsilon} > 0 \text{ if } 2^{\nu}(2-\varepsilon)^{-1} < |\xi| < 2^{\nu}(2-\varepsilon), \text{ for each } \varepsilon > 0,$$

 $|D^{\alpha}\hat{\varphi}_{\nu}(\xi)| \leq c_{\alpha}|\xi|^{-|a|}$ for every multi-index α .

Without loss of generality we may assume that, for a suitable φ_0 ,

$$\varphi_{\nu}(x) = 2^{\nu n} \varphi_0(2^{\nu} x).$$

In what follows s, p, q will always denote numbers such that $s \in \mathbb{R}$, $1 < p, q < \infty$. We then define the homogeneous Besov space $\dot{B}_p^{s,q}$ to be the space of all distributions $f \in S'$ such that $||f||_{\dot{B}_s^{s,q}} < \infty$, where

$$||f||_{\dot{B}_{p}^{s,q}} = \left(\sum_{-\infty}^{\infty} (2^{\nu s} ||\varphi_{\nu} * f||_{p})^{q}\right)^{1/q}.$$

Further, let Φ denote a function satisfying:

$$\Phi \in \mathcal{S}$$
, supp $\hat{\Phi} \subset \{|\xi| \leq 1\}$,

$$|\hat{\Phi}(\xi)| > C_{\epsilon} > 0 \text{ if } |\xi| \le 1 - \epsilon, \text{ for each } \epsilon > 0,$$

$$\hat{\Phi}(\xi) = 1 \text{ if } |\xi| \leq \frac{1}{2}.$$

Moreover, we define Φ_{ν} by $\Phi_{\nu}(x) = 2^{\nu n} \Phi(2^{\nu}x)$. The inhomogeneous Besov space $B_{\nu}^{s,q}$ is now the space of all $f \in S'$ such that $||f||_{B_{\nu}^{s,q}} < \infty$ where

$$||f||_{B_{\rho}^{s,q}} = ||\Phi * f||_{\rho} + \left(\sum_{1}^{\infty} (2^{\nu s} ||\varphi_{\nu} * f||_{\rho})^{q}\right)^{1/q}.$$

Finally we introduce, mainly for technical reasons, the space $\mathfrak{B}_n^{s,q}$. Put

$$\|f\|_{\mathfrak{B}^{s,q}_{p}} = \bigg(\sum_{-\infty}^{\infty} \big(2^{\nu s} \|\Phi_{\nu} * f\|_{p}\big)^{q}\bigg)^{1/q}.$$

Then $\mathfrak{B}_{p}^{s,q}$ is the space of all $f \in \mathbb{S}'$ such that $||f||_{\mathfrak{B}_{p}^{s,q}} < \infty$.

The following proposition gives some relations between these spaces.

538 PER NILSSON

- PROPOSITION 1. (i) $\mathfrak{B}_{p}^{s,q} = \dot{B}_{p}^{s,q}$ if s < 0. (ii) $\mathfrak{B}_{p}^{0,\infty} = L^{p}$ if p > 1, $\mathfrak{B}_{1}^{0,\infty} = \mathfrak{M}$. (iii) $\mathfrak{B}_{p}^{s,q} = 0$ if s > 0 or s = 0 and $q < \infty$. (iv) $B_{p}^{s,q} = L_{p} \cap \dot{B}_{p}^{s,q}$ if s > 0.

PROOF. (i) We begin by proving $\mathfrak{B}_{p}^{s,q} \subset \dot{B}_{p}^{s,q}$. We have $\varphi_{p} = \Phi_{p+1} * \varphi_{p}$, as is easily seen by taking Fourier transforms. Young's inequality then yields

$$\|\varphi_{\nu} * f\|_{p} \le \|\varphi_{\nu}\|_{1} \|\Phi_{\nu+1} * f\|_{p} \le C \|\Phi_{\nu+1} * f\|_{p}.$$

This immediately implies that

$$||f||_{\dot{B}^{s,q}_{p}} \leq C||f||_{\mathfrak{B}^{s,q}_{p}}.$$

Conversely we now prove that $\dot{B}_p^{s,q} \subset \mathfrak{B}_p^{s,q}$ if s < 0. Assuming, in addition, that $\sum_{-\infty}^{\infty} \hat{\varphi}_{\nu}(\xi) = 1$, we obtain as above that $\Phi_{\nu} = \sum_{\mu \leqslant \nu+1} \varphi_{\mu} * \Phi_{\nu}$. By application of the triangle inequality and Young's inequality we obtain

$$2^{\nu s} \|\Phi_{\nu} * f\|_{p} \leq \sum_{\mu < \nu + 1} 2^{\nu s} \|\Phi_{\nu}\|_{1} \|\varphi_{\mu} * f\|_{p}$$

$$\leq C \sum_{\lambda > -1} 2^{\lambda s} (2^{(\nu - \lambda)s} \|\varphi_{\nu - \lambda} * f\|_{p}).$$

Minkowsky's inequality now implies that

$$||f||_{\mathfrak{B}^{s,q}_{p}} \leq C \left(\sum_{\lambda > -1} 2^{\lambda s} \right) ||f||_{\dot{B}^{s,q}_{p}},$$

where the geometrical sum converges since s < 0.

- (ii) If $f \in \mathfrak{B}_{p}^{0,\infty}$ we have $\sup_{\nu} ||\Phi_{\nu} * f||_{p} \le C$. Since $\Phi_{\nu} * f \to f$ in S' it follows by a classical argument involving weak compactness that $f \in L^p$ if p > 1 and $f \in \mathfrak{N}$ if p = 1.
- (iii) If s>0 we may clearly assume that $q=\infty$. For $f\in\mathfrak{B}_p^{s,\infty}$ it follows that $\|\Phi_{\nu} * f\|_{p} \le C2^{-\nu s}$. Thus $\Phi_{\nu} * f \to 0$ in L^{p} . But as in (ii), $\Phi_{\nu} * f \to f$ in S' and therefore $f \equiv 0$ if s > 0. The case s = 0, $q < \infty$ is handled similarly.
 - (iv) See [1, p. 148]. □
- 2.2. Sobolev spaces (see [8]). Let $k \in \mathbb{Z}_+$ and $1 \le p \le \infty$. The Sobolev space W_k^p is then the space of all $f \in S'$ such that $D^{\alpha}f \in L^p$ for $|\alpha| \le k$.
- 2.3. Spaces of Morrey type (see [6], [7]). In what follows let $\lambda > 0$, 1 . If $f \in L^1_{loc}$, $x \in \mathbb{R}^n$ and r > 0 we put

$$G_{\lambda}^{p}(f, x, r) = \left(r^{-\lambda} \int_{|x-y| \le r} |f(y)|^{p} dy\right)^{1/p}.$$

The space $M_q^{p,\lambda}(\cdot)$ is defined to consist of all $f \in L_{loc}^1$ such that for each $x \in \mathbb{R}^n$ the norm

$$||f||_{M_q^{p\lambda}(\cdot),x} = \left(\sum_{-\infty}^{\infty} \left(G_{\lambda}^p(f,x,2^{\nu})\right)^q\right)^{1/q}$$

is finite. We equip $M_a^{p,\lambda}(\cdot)$ with the topology given by the totality of these norms as x ranges over \mathbb{R}^n .

In analogy with §1 we now introduce the space $M_q^{p,\lambda}(C)$. A function $f \in L^1_{loc}$ belongs to $M_q^{p,\lambda}(C)$ iff the norms

$$||f||_{M_q^{p\lambda}(C),K} = \left(\sum_{-\infty}^{\infty} \left(\sup_{x \in K} G_{\lambda}^{p}(f, x, 2^{\nu})\right)^{q}\right)^{1/q}$$

are finite for every compact subset K in \mathbb{R}^n . Using these norms we define a topology on $M_a^{p,\lambda}(C)$.

Let ω be a given positive function on \mathbb{R}^n . The space $M_q^{p,\lambda}(\omega(x))$ then consists of all $f \in L^1_{loc}$ satisfying

$$||f||_{M_q^{p\lambda}(\omega(x))} = \left(\sum_{-\infty}^{\infty} \left(\sup_{x \in \mathbb{R}^n} G_{\lambda}^p(f, x, 2^{\nu})/\omega(x)\right)^q\right)^{1/q} < \infty.$$

With this norm $M_q^{p,\lambda}(\omega(x))$ will be a Banach space. In particular, if $\omega(x) = (1+|x|^2)^{s/2}$, s>0, which is the only case of interest for us, we write $M_q^{p,\lambda}(s)$ instead of $M_q^{p,\lambda}((1+|x|^2)^{s/2})$. The usual Morrey spaces correspond to $M_q^{p,\lambda}(0)$ in our notation. They agree with the Stampacchia spaces $L_q^{p,\lambda}$ if $0<\lambda< n$, $q<\infty$ or $0<\lambda\leqslant n$, $q=\infty$. See [2] and [7]. We clearly have the following inclusions.

$$M_q^{p,\lambda}(\cdot)\supset M_q^{p,\lambda}(C)\supset M_q^{p,\lambda}(s).$$

PROPOSITION 2. (i) $M_q^{p,\lambda}(\cdot) = 0$ if $\lambda > n$ or $\lambda = n$ and $q < \infty$, or $\lambda = 0$ and $q < \infty$.

- (ii) $M^{p,n}_{\infty}(0) = L^{\infty}$.
- (iii) $M_{\infty}^{p,0}(\cdot) = M_{\infty}^{p,0}(0) = L^{p}$.

PROOF. (i) If $\lambda > n$ we may assume that $q = \infty$. Take $f \in M_{\infty}^{p,\lambda}(\cdot)$ and let x be a Lebesgue point for f. For some C we have

$$\frac{1}{r^n} \int_{|x-y| \le r} |f(y)|^p \, dy \le Cr^{\lambda-n}. \tag{2}$$

Lebesgue's theorem then implies that the left side approaches |f(x)| as $r \to 0$. Thus $f(x) \equiv 0$ a.e. if $\lambda > n$.

The case $\lambda = n$, $q < \infty$ is treated similarly. With x a Lebesgue point as before, then for some ν_0 we must have

$$\left(\frac{1}{2^{\nu n}} \int_{|x-y| \le 2^{\nu}} |f(y)|^{p} dy\right)^{q/p} \ge \frac{1}{2} |f(x)|^{q}$$

if $\nu \le \nu_0$. Summing over ν we see that f must vanish a.e. The case $\lambda = 0$, $q < \infty$ is trivial.

- (ii) If $f \in M^{p,n}_{\infty}(0)$ we may choose C in (2) independent of x. Letting $\nu \to -\infty$ we see that $f \in L^{\infty}$, again by Lebesgue's theorem.
 - (iii) Trivial.
- 3. Determination of $\pi \cdot \dot{B}_{p}^{s,q}$. We now turn to the main topic of this paper. Since the three cases s > 0, s = 0 and s < 0 behave quite differently, we divide this section into three parts.
 - 3.1. The case s > 0.

THEOREM 1. If s > 0 and $1 \le p$, $q \le \infty$ then $\pi \cdot \dot{B}_p^{s,q} = B_p^{s,q}$. Moreover we have for each $h \in \mathbb{R}^n$ and f in this space

$$||f||_{\dot{B}_{p}^{s,q}} + ||\chi_{h}f||_{\dot{B}_{p}^{s,q}} \approx |h|^{s}||f||_{p} + ||f||_{\dot{B}_{p}^{s,q}}.$$
(3)

The main component in the proof will be the observation that multiplication by χ_h corresponds to translation on the Fourierside, which is expressed in the following lemma.

LEMMA 3. Assume that $\psi \in L^1$ and supp $\hat{\psi}$ is compact. For some v_0 we then have the inequality

$$\|\psi * f\|_p \le \|\psi\|_1 \|\varphi_p * \chi_h f\|_p$$

if $\nu \geqslant \nu_0$, $|h| \approx 2^{\nu}$ and the right-hand side is finite, $1 \leqslant p \leqslant \infty$.

PROOF OF LEMMA 3. Choose $(\varphi_{\nu})_{\nu \in \mathbb{Z}}$, as in the definition of $\dot{B}_{p}^{s,q}$, satisfying, in addition, $\hat{\varphi}_{\nu}(\xi) = 1$ if $\xi \in I_{\nu} = \{\xi : |\xi| - 2^{\nu}| \le C_{0}2^{\nu}\}$. As supp $\hat{\psi}$ is compact, there exists a ν_{0} such that supp $\hat{\psi} \subset \{|\xi| \le C_{0}2^{\nu_{0}}\}$. Thus if $\nu > \nu_{0}$, $|h| \approx 2^{\nu}$, we have supp $(\chi_{h}\psi)^{\hat{}} = h + \text{supp } \hat{\psi} \subset I_{\nu}$. Our choice of $(\varphi_{\nu})_{\nu \in \mathbb{Z}}$ then implies that $\chi_{h}\psi * \varphi_{\nu} = \chi_{h}\psi$. Rewriting $\chi_{h}(\psi * f)$ as $\varphi_{\nu} * \chi_{h}\psi * \chi_{h}f$ and applying Young's inequality, we get

$$\|\psi * f\|_{p} = \|\chi_{h}(\psi * f)\|_{p} \leq \|\psi\|_{1} \|\varphi_{\nu} * \chi_{h} f\|_{p}.$$

PROOF OF THEOREM 1. We begin by proving (3) for a fixed h. With $\psi = \Phi$, as in the definition of $B_p^{s,q}$, and h_0 such that $|h_0| \approx 1$ we obtain from Lemma 3,

$$\|\Phi * f\|_p \leq C \|\chi_{h_0} f\|_{\dot{B}^{s,q}_p}$$

This implies that

$$||f||_{B_{p}^{s,q}} \leq C ||\chi_{h_0} f||_{\dot{B}_{p}^{s,q}} + ||f||_{\dot{B}_{p}^{s,q}}.$$
(4)

In order to obtain the converse inequality we first use the imbedding $B_p^{s,q} \subset \dot{B}_p^{s,q}$, s > 0 (Proposition 1(iv)) which gives

$$||f||_{\dot{B}_{p}^{s,q}} \leq C||f||_{B_{p}^{s,q}},$$

$$||\chi_{h_{0}}f||_{\dot{B}_{s}^{s,q}} \leq C||\chi_{h_{0}}f||_{B_{s}^{s,q}}.$$
(5)

But χ_h acts continuously on $B_p^{s,q}$. Indeed, in view of the fact that $B_p^{s,q} = (L^p, W_k^p)_{\theta,q}$, $s = \theta k$, $0 < \theta < 1$ (see [8, p. 64]), it suffices to show that χ_h acts continuously on W_k^p , which is obvious. We thus have

$$\|\chi_{h_0}f\|_{\dot{B}^{s,q}} \leq C\|f\|_{\dot{B}^{s,q}}.$$
 (6)

By combining (4)–(6) we get the desired inequalities:

$$||f||_{B_{p}^{1,q}} \approx ||\chi_{h_0} f||_{\dot{B}_{x}^{1,q}} + ||f||_{\dot{B}_{p}^{1,q}} \quad \text{with } |h_0| \approx 1.$$
 (7)

An argument with dilations will now establish (3). Indeed take $0 \neq h \in \mathbb{R}^n$. As rotations act continuously on $\dot{B}_p^{s,q}$ (see Lemma 1) we may assume that h and h_0 are collinear, i.e. $h = \lambda h_0$ for some $\lambda > 0$.

Let τ_{δ} denote the dilation operator defined by

$$(\tau_{\delta}f)(x) = f(\delta x), \qquad \delta > 0.$$

It is well known that τ_{δ} acts continuously on $\dot{B}_{p}^{s,q}$ and we have

$$\|\tau_{\delta}f\|_{\dot{B}^{s,q}_{\rho}} \approx \delta^{s-n/\rho} \|f\|_{\dot{B}^{s,q}_{\rho}}.$$
 (8)

We further notice the formula

$$\chi_h f = \tau_\lambda (\chi_{h_0} \tau_{1/\lambda} f). \tag{9}$$

If we apply (7) with $\tau_{1/\lambda}f$ and multiply by $\lambda^{s-n/p}$ we get, in view of (8) and (9),

$$\|\chi_h f\|_{\dot{B}^{s,q}_p} + \|f\|_{\dot{B}^{s,q}_p} \approx \lambda^{s-n/p} \|\tau_{1/\lambda} f\|_{\dot{B}^{s,q}_n}.$$

Finally, the right side is simplified by once again invoking Proposition 1(iv) thereby obtaining

$$\lambda^{s-n/p} \| \tau_{1/\lambda} f \|_{B_{p}^{s,q}} \approx \lambda^{s-n/p} (\| \tau_{1/\lambda} f \|_{p} + \| \tau_{1/\lambda} f \|_{\dot{B}_{p}^{s,q}})$$
$$\approx \lambda^{s} \| f \|_{p} + \| f \|_{\dot{B}_{p}^{s,q}}.$$

As $\lambda^s \approx |h|^s$ we have now proved (3), and thus $\pi \cdot \dot{B}_p^{s,q} = B_p^{s,q}$. \square

COROLLARY 1. Let s > 0, $1 \le p$, $q \le \infty$. Then $\pi_{s'}\dot{B}_{p}^{s,q} = B_{p}^{s,q}$ if s' > s, $\pi_{s'}\dot{B}_{p}^{s,q} = 0$ if s' < s.

2.2. The case s = 0.

Theorem 2. (i) If $1 \le p, q \le \infty$ then $\pi \cdot \dot{B}_p^{0,q} \subset B_p^{0,q}$.

(ii) If
$$q = \infty$$
 and $1 \le p \le \infty$ or $q \ge \max(2, p)$ and $1 , then
$$\pi_0 \dot{B}_p^{0,q} = L^p \quad \text{if } p > 1, \pi_0 \dot{B}_1^{0,\infty} = \mathfrak{N}.$$$

PROOF. (i) As in the proof of Theorem 1 we obtain

$$||f||_{B_{p}^{0,q}} \le C||\chi_{h}f||_{\dot{B}_{p}^{0,q}} + ||f||_{\dot{B}_{p}^{0,q}} \quad \text{if } |h| \approx 1.$$

Thus $\pi \cdot \dot{B}_{p}^{0,q} \subset B_{p}^{0,q}$.

(ii) If p and q are as in the hypothesis, we have the imbedding $L^p \subset \dot{B}^{0,q}_p$ (see [8, p. 80]). It follows that $L^p \subset \pi_0 \dot{B}^{0,q}_p$. We now show that, conversely, $\pi_0 \dot{B}^{0,q}_p \subset L^p$ holds. Take $f \in \pi_0 \dot{B}^{0,q}_p$. Then for each ν , $\Phi_{\nu} * f \in \pi_0 \dot{B}^{0,q}_p$. Lemma 3 now gives, if $|h| \approx 2^{\nu}$ and $\psi = \Phi_{\nu+1}$,

$$\begin{split} \|\Phi_{\nu} * f\|_{p} & \leq C \|\chi_{h}(\Phi_{\nu} * f)\|_{\dot{B}^{0,q}_{p}} \\ & \leq C \|\Phi_{\nu} * f\|_{\pi_{0}\dot{B}^{0,q}_{p}} \\ & \leq C \|f\|_{\pi_{0}\dot{B}^{0,q}_{p}}, \end{split}$$

so by Proposition 1(ii), $f \in L^p$ if p > 1. $f \in \mathfrak{N}$ if p = 1. \square

2.3. The case s < 0. We first observe that Proposition 1(ii) allows us to replace $\dot{B}_p^{s,q}$ with $\mathfrak{B}_p^{s,q}$ as s < 0. This will be done in the proofs given below. It will be convenient to introduce the following terminology.

DEFINITION. We say that s, p, q, where $s < 0, 1 \le p, q \le \infty$, are good indices iff $-n/p' \le s < 0$ if $q = \infty$, or -n/p' < s < 0 if $q < \infty$. (p' denotes the conjugate index to p.) Otherwise we say that s, p, q are bad indices.

Using this notation we now state our main result.

542 PER NILSSON

THEOREM 3. If s, p, q are bad indices then

(i)
$$\pi \cdot \dot{B}_{p}^{s,q} \cap L^{1} = 0$$
,
(ii) $\pi_{c} \dot{B}_{p}^{s,q} = 0$.

(ii)
$$\pi_{c} \dot{B}_{p}^{s,q} = 0$$

PROOF. We reduce to the case $p = \infty$. This may be accomplished by using Besov's imbedding theorem (see [8, p. 63]) implying that $\dot{B}_{p}^{s,q} \subset \dot{B}_{\infty}^{s-n/p,q}$. (i) Take $f \in \pi \cdot \dot{B}_{\infty}^{s,q} \cap L^{1}$. We then obtain, using Parseval's formula,

$$2^{\nu s} \|\Phi_{\nu} * f\|_{\infty} \ge 2^{\nu s} |(\Phi_{\nu} * f)(0)| = 2^{\nu s} \left| \int \Phi_{\nu}(x) f(-x) \ dx \right|$$
$$= C 2^{\nu s} \left| \int \hat{\Phi}(\eta/2^{\nu}) \hat{f}(-\eta) \ d\eta \right|.$$

We may assume that $\hat{\Phi}(\eta) \ge 0$. If we apply the above inequality to $\chi_h(f * \bar{f})$ and then use Young's inequality we find that

$$2^{\nu s} \int_{|\eta-h| \leq 2^{\nu-1}} |\hat{f}(\eta)|^2 d\eta \leq C 2^{\nu s} \|\Phi_{\nu} * \chi_h f\|_{\infty} \|f\|_1.$$

Therefore it follows that $\hat{f} \in M_{2q}^{2,-s}(\cdot)$. After invoking Proposition 2(ii), we arrive at the result $\hat{f} \equiv 0$ if s, ∞, q are bad indices.

(ii). Take $f \in \pi_c \dot{B}^{s,q}_{\infty}$. Our aim is to modify f so that we may use (i). Assume first that q > 1. Take ψ with $\hat{\psi} \in C_0^{\infty}$. Then $f * \psi \in \pi_c \dot{B}_{\infty}^{s,q}$. As supp $(\psi * f)$ is compact, it is easily seen that $f * \psi \in L^{\infty}$. Indeed we clearly have for some finite N,

$$f * \psi = \sum_{-\infty}^{N} \varphi_{\nu} * f * \psi.$$

As s < 0, an application of Minkowsky's inequality yields

$$\|f * \psi\|_{\infty} \leq \|f * \psi\|_{\dot{B}^{0,1}_{\infty}} \leq 2^{-Ns} \|f * \psi\|_{\dot{B}^{s,q}_{\infty}}.$$

Take $\varphi \in L^1 \cap S$ with supp $\hat{\varphi}$ compact. Hölder's inequality now implies that $\varphi(f * \psi) \in L^1$. As $\dot{B}_{\infty}^{s,q}$ is a dual space for q > 1 (see [8, p. 74]), we find, by using Lemma 2, that $\varphi(f * \psi) \in \dot{B}_{\infty}^{s,q}$. Thus $\varphi(f * \psi) \in \pi \cdot \dot{B}_{\infty}^{s,q} \cap L^1$ if we apply the above argument to $\chi_h \varphi(f * \psi)$. (i) then shows that $\varphi(f * \psi) \equiv 0$ for all φ and ψ . Thus f must vanish.

The case q = 1 follows trivially from what we have proved for q > 1. Just notice that $\dot{B}_{p}^{s,1} \subset \dot{B}_{p}^{s,q}$ for any $q \ge 1$. \square

The main idea in this proof was the pointwise behaviour of f. The Hausdorff-Young theorem allows us to sharpen Theorem 2 if $1 \le p \le 2$. Let \mathcal{F} denote the Fourier transform.

THEOREM 4. Let $s < 0, 1 \le p \le 2, 1 \le q \le \infty$. Then $\mathfrak{F}: \pi \cdot \dot{B}_p^{s,q} \to M_q^{p',-sp'}(\cdot)$. In particular, $\pi \cdot \dot{B}_{p}^{s,q} = 0$ if s, p, q are bad indices.

PROOF. An application of the Hausdorff-Young theorem yields for each $h \in \mathbb{R}^n$ and ν ,

$$2^{\nu s} \|\Phi_{\nu} * \chi_{h} f\|_{p} \ge C 2^{\nu s} \|\hat{\Phi}(\cdot/2^{\nu}) \hat{f}(\cdot - h)\|_{p'}$$

$$\ge C \left(2^{\nu s p'} \int_{|\eta - h| \le 2^{\nu - 1}} |\hat{f}(\eta)|^{p'} d\eta\right)^{1/p'}$$

$$= C G_{-sp'}^{p'} (\hat{f}, h, 2^{\nu - 1}).$$

Raising this to the qth power and summing over ν we obtain

$$\|\hat{f}\|_{M_a^{p',-\frac{np'}{2}}(\cdot),h} \leqslant C \|\chi_h f\|_{\dot{B}^{s,q}_a}.$$

This proves the first part of the theorem.

That $\pi \cdot \dot{B}_p^{s,q} = 0$, for s, p, q bad indices, is now a consequence of Proposition 2(i). \square

Conversely, reversing all inequality signs in the above proof, we obtain the following theorem and corollary.

THEOREM 5. If
$$s < 0, 2 \le p \le \infty, 1 \le q \le \infty$$
. Then $\mathfrak{F}: M_a^{p', -sp'}(\cdot) \to \pi \cdot \dot{B}_n^{s,q}$.

COROLLARY 2. If s < 0, $1 \le q \le \infty$ then

$$\pi \cdot \dot{B}_2^{s,q} = \mathfrak{F} M_q^{2,-2s}(\cdot).$$

REMARKS. (i) Theorems 4 and 5 and Corollary 2 have obvious extensions to the spaces $\pi_{\omega(h)}\dot{B}_p^{s,q}$ and $\pi_c\dot{B}_p^{s,q}$. The conclusions will then involve the spaces $M_q^{p,\lambda}(\omega(x))$ and $M_q^{p,\lambda}(C)$.

(ii) Corollary 2 shows that the spaces $\pi \cdot X$, $\pi_c X$ and $\pi_{\omega(h)} X$ do not coincide in general. For instance it is easily seen that $M_q^{2,-2s}(\cdot)$ and $M_q^{2,-2s}(C)$ behave topologically differently. Further, $f \in M_{\infty}^{2,n}(\omega(x))$ implies that $|f(x)| < C\omega(x)$. As $M_{\infty}^{2,n}(0) = L^{\infty}$ we thus see that $\pi_{\omega(h)} \dot{B}_2^{-n/2,\infty} \neq \pi_0 \dot{B}_2^{-n/2,\infty}$ if, e.g., $\omega(h) \to 0$ as $h \to \infty$.

As is seen by Theorem 5, $\pi \cdot \dot{B}_p^{s,q}$ is a "large" space if $2 \le p \le \infty$ and s, p, q are good indices. This is true without any restrictions on p, as is seen from the following proposition.

Proposition 3. $S \subset \pi_0 \dot{B}_p^{s,q}$ if s, p, q are good indices.

We omit the proof since this simply amounts to a use of Young's inequality.

REMARK. Some of our results are already found in [4]. More precisely, Johnson considers $\pi_s \dot{B}_p^{s,q}$ if s > 0 and $\pi_0 \dot{B}_p^{s,\infty}$ if $s \le 0$. He establishes a weaker version of Theorem 1. He also proves Theorem 2(ii), if $q = \infty$, Theorems 4, 5 and Corollary 2 for $\pi_0 \dot{B}_p^{s,\infty}$.

REFERENCES

- 1. J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer, Berlin and New York, 1976.
- 2. S. Campanato, Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa 18 (1964), 137-160.
- 3. E. Gagliardo, A unified structure in various families of function spaces. Compactness and closure theorems, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961.
- 4. R. Johnson, Maximal subspaces of Besov spaces invariant under multiplication by characters, Trans. Amer. Math. Soc. 249 (1979), 387-407.
- 5. _____, Duality methods for the study of maximal subspaces of Besov spaces invariant under multiplication by characters, Univ. of Maryland Tech. Report 79, 75.
- 6. C. B. Morrey, Functions of several variables and absolute continuity, Duke Math. J. 6 (1940), 187-215
 - 7. J. Peetre, On the theory of $L_{p,\lambda}$ spaces, J. Funct. Anal. 4 (1969), 71-87.
 - 8. ____, New thoughts on Besov spaces, Duke Univ. Math. Ser. Durham, N. C., 1976.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LUND, S-22007 LUND, SWEDEN